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A Note on Polynomial Matrix Functions
over a Finite Field

by J.V. Brawley*

1. Let F = GF(q) denote the finite field of order q, and let
Fn denote the ring of nxn matrices over F. Consider an element
A(Xx) € Fn[x]; y e

N N-1

(1) A(x]} = AT+ Ay X toAX + A

where Ai € Fn. This polynomial defines via substitution several

functions from Fn to Fn. Two such functions are

(2) B » Ar(B) = ANB + AN-lB e AlB + A0
and

.z = mN N-1
(3) B AL(B) = B AN + B AN_1 e BA1 + AO

We call (2) and (3), respectively, the right and left polynomial
functions determined by A(x) with the terms right and left indicating

the side on which the substituting variable is placed.
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Definition. A function A:Fn > Fn is called a right

respectively left) polynomial function if there exists a

polynomial A(x) e Fn[x] which represents A via the right
subsitution (2) (respectively(3)).

In this note we obtain unique representations for and
determine the number of right (left) polynomial functions
A:F_ = Fn. Proofs will be given for the right functions which

n

can be obviously modified for the left polynomial functions.

2. Recall that

i

(4) L, (x) = (x? -x)

n=as
—

is the monic polynomial of least degree in F[x] satisfied by
every B ¢ Fn; indeed,Ln(x) is the least common multiple of all

degree n polynomials in F[x] [See, 2]. We define § by

(5) § = deg L (x) = q" + qn-l Lt A
N :
THEOREM 1. Let Z(x) = I Z.,x' be a polynomial in F_[x]
R i=0
with degZ(x) = N < 6. If 2 (B) = z,BN +...+ Z;B + Z, = 0 for

every B ¢ Fn, then Zi e Uy 2 ol Ty (2 e s N

n-1
n-lx

polynomial of degree n in F[x], and let C ¢ Fn denote the companion

Proof. Let f(x) = x"-a T ... Cagx-ag be an arbitrary

matrix of f(x). Dividing Z(x) by f(x) we obtain

(6) Z(x) = Q(x) £ (x) + R(x)




i S—

where Q(x) and R(x) are in Fn[x] with

(7) R(x) = Rn_lx B Rlx + RO

Since f(x) is a scalar polynomial we may substitute an arbitrary
matrix B into (6) to get Zr(B) = Qr(B)f(B) + Rr(B)' In particular,
for every nonsingular P € GL(n,q) it follows from the Hamilton-

Cayley theorem that

A 5 -1
0 =2 (PCP™") = R (PCP™")

Thus (R_(PCP"1))P = 0 or

PR & s RPC + RP = O

n-1
PC * Rz 1 0

(8) R

N

n-1

g for every P ¢ GL(n,q).
Now it is known [1] that each matrix X ¢ Fn can be written

as a linear combination of nonsingular matrices Pi; i.e

X = C1P1 + CZP2 . S
If follows from (8) that

(9) R .xc"1, R n-1

n-1 n-ZXC

R RIXC + ROX =0

for every X ¢ Fn . In particular, if we take X = Em where Em
has a 1 in position (m,1) and zeros elsewhere we find through

actual computation that equation (9) reduces to




4
{ ..(0) A1) (n-1)
"I "Im : ' L
L(0) (1) (n-1)
"2m "om : TR
= 0
(0) ey r(n-l)
nm nm nm
where Rk = (rﬁ?)). Thus column m of Rk 15 zero tor K = 0, 1,::.,n-1
and m = 1, 2,0 ome R oE Rk = hesark sl o, =L It €ollows

from (6) that f(x) divides Z(x) for every monic of degree n; hence
Ln(x) divides Z(x). But deg Z(x)<‘deg1h(x) so Z(x) must be the

zero polynomial; i.e., every Z, = 0 and the proof is complete.
As a corollary to Thec we have the following:

THEOREM 2. Each right polynomial function Atk o+ F ocan

be represented uniquely by a polynomial A(x) ¢ F [x] of degree -
and each such polynomial represents a right polynomial function.
s S ASR0s PR TRAl B .

-

The number of right polynomial functions is therefore q"

0

Proof. If A;(x) and A,(x) have degree < ¢ and cach represent
the right polynomial function A then Al(x) - Az(x) represents the

zero function; hence by Theorem 1, Al(x) = Az(x).

Finally let A be a right polynomial function and let A(x)




T

&0
=

R S —

where R(x) has degree < §.

[ S¥]

represent A. By division

Js

A(x) = Q(x)Ln(x) + R(x)

Clearly, R(x) represents A.
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n
B<’Ar(B) ANB $ san F AlB + AO
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A function A:F_~F_ is called a right (left) polynomial function if

B'*AL(B)

there exists A(x) ¢ Fn[x] which represents A via the right (left)
substitution B-»Ar(B) (B-»AL(B)).: This paper obtains a unique repre-
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